Master Classe du 5 janvier 2022

« VISER LE SOMMET DE LA MONTAGNE...»

niveau : premières spécialité maths

Chapitres réinvestis	Prérequis				
DÉRIVATION.SECOND DEGRÉ.	 Variations d'une fonction via la dérivée. Équation de la tangente Second degré. Factorisation d'un polynôme par identification. 				

Énoncé

On dispose:

- d'une courbe \mathscr{C}_f , qui est celle de la fonction $f(x) = \frac{x^3}{4} \frac{3}{2}x^2$;
- d'un point mobile sur \mathscr{C}_f et sa tangente \mathscr{T} à \mathscr{C}_f , représentés en deux positions sur le schéma : A et D;
- du point B(0,2).

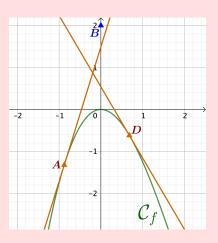


Figure 1. Figure de présentation de l'exercice.

On se demande quelles tangentes passent par le point B.

Questions intermédiaires

- 1. Donner les variations complètes de f.
- 2. Soit $m \in \mathbb{R}$, écrire l'équation de la tangente \mathcal{T}_m en m à \mathcal{C}_f .
- 3. Déterminer pour quelles valeurs de *m* cette tangente passe par *B* :
 - a. par l'analyse;
 - b. par l'algèbre.

Les solutions

1. On détermine $f'(x) = \frac{3x^2}{4} - 3x = x(\frac{3x}{4} - 3)$. f' est ici une fonction (lacunaire) de degré 2 et l'on sait étudier son signe :

х	$-\infty$		0		4		+∞
f'(x)		+	0	_	0	+	
\overline{f}		7	0	7	-8	7	

Ce tableau montre que la Figure 1 devrait être zoomée en arrière :

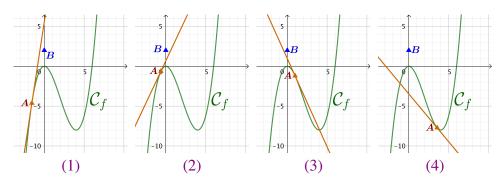


Figure 2. Figure dézoomée avec plusieurs tangentes.

Sur cette **Figure 2**, il semblerait (entre (1) et (2)) que la tangente passe par B quelque part pour une abscisse $a \approx -1$, puis une autre fois peut-être vers a environ égal à 2 ou 3 (schéma (3)) et plus du tout ensuite car (à partir de (4) le point d'intersection entre la tangente rouge et l'axe vertical semble descendre vers $-\infty$).

2. On trouve $\mathcal{T}_m: y = f'(m)(x - m) + f(m) = \left(\frac{3m^2}{4} - 3m\right)(x - m) + \frac{m^3}{4} - \frac{3}{2}m^2(5)$ pour l'équation de la tangente. Certes cela paraît un peu compliqué!

Cependant nous allons bientôt voir que les choses vont se simplifier...

3. On veut $B(0,2) \in \mathcal{T}_m$, cela se produit ssi l'équation (5) est vérifiée en remplaçant (x,y) par (0,2):

$$B \in \mathcal{T}_m \iff \left(\frac{3m^2}{4} - 3m\right)(-m) + \frac{m^3}{4} - \frac{3}{2}m^2 = 2$$
$$\Leftrightarrow -\frac{3m^3}{4} + 3m^2 + \frac{m^3}{4} - \frac{3}{2}m^2 = 2$$
$$\Leftrightarrow -\frac{m^3}{2} + \frac{3}{2}m^2 = 2.$$

Et là deux méthodes:

a) par l'analyse

• Posons $p(m) = -\frac{m^3}{2} + \frac{3}{2}m^2$: on cherche donc si p(m) peut prendre la valeur 2 pour certaines valeurs de m, autrement dit : on cherche les antécédents de 2 par la fonction p. Pour trouver cela, on constitue

On a $p'(m) = 3\left(\frac{-m^2}{2} + m\right)$ nul en m = 0 et en m = 2 et du signe de a (qui vaut $a = -\frac{3}{2} < 0$) en dehors des racines, et ainsi :

m	-∞		0		2		+∞
p'(m)		_	0	+	0	_	
p	+∞	7	0	7	2	7	-∞

• On voit que la chance nous sourit : m=2 est solution. Et une autre solution sera quelque part pour $m \in]-\infty, 0[.$

b) par l'algèbre

- On doit finalement résoudre l'équation du troisième degré $-\frac{m^3}{2} + \frac{3}{2}m^2 2 = 0$.
- La seule façon de le faire est d'en trouver une racine évident.

Essayons avec m=0, clairement cela ne marche pas.

Essayons avec m = -1, cela fonctionne!

- À partir de là on pourrait combiner les deux méthodes et conclure. Mais tentons d'aller jusqu'au bout de cette méthode–ci (« avec l'algèbre »).
- On va factoriser le polynôme $-\frac{m^3}{2} + \frac{3}{2}m^2 2$ par (m+1), ce qui nous conduit à : $-\frac{m^3}{2} + \frac{3}{2}m^2 2 = (m+1)(am^2 + ba + c) = am^3 + (b+a)m^2 + (b+c)m + c$ d'où le système :

$$\begin{cases} a = -\frac{1}{2} \\ b - \frac{1}{2} = \frac{3}{2} \\ b + c = 0 \\ c = -2 \end{cases} \Leftrightarrow \begin{cases} a = -\frac{1}{2} \\ b = 2 \\ b = 2 \\ c = -2 \end{cases}.$$

- Conclusion : l'équation $-\frac{m^3}{2} + \frac{3}{2}m^2 2 = 0$ est équivalente à l'équation $(m+1)\left(-\frac{1}{2}m^2 + 2m 2\right) = 0$.
- Par le principe des équations-produit, les solutions se trouvent donc en résolvant :

$$\begin{cases} m+1=0 & \text{an on retrouve la solution \'evidente } m=-1 \\ -\frac{1}{2}m^2+2m-2=0 & \text{an on trouve } \Delta=0 \text{ puis } m=2, \text{ ce qui confirme la m\'ethode a} \end{cases}.$$

Conclusion: la tangente passe par B pour deux abscisses seulement, qui sont m=-1 et m=2.

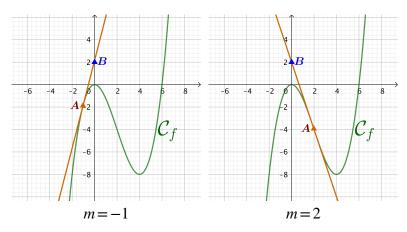


Figure 3. Les deux solutions.